Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

Let $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ be differentiable functions such that $f(x)=x^3+3 x+2, g(f(x))=x$ and $h(g(x))=x$ for all $x \in R$. Then, $h'(1)$ equals ________.

Correct Answer:
666
Explanation:

We have,

$g(f(x))=x$ and $h(g(g(x)))=x$ for all $x \in R$

$\Rightarrow h(g(g(f(x))))=f(x)$ for all $x \in R$      [Replacing x by f(x)]

$\Rightarrow h(g(x))=f(x)$ for all $x \in R$           [∵ g(f(x)) = x]

$\Rightarrow h(g(f(x)))=f(f(x))$  for all  $x \in R$          [Replacing x by f(x)]

$\Rightarrow h(x)=f(f(x))$  for all  $x \in R$            [∵ g(f(x)) = x]

$\Rightarrow h'(x)=f'(f(x)) f'(x)$ for all  $x \in R$

$\Rightarrow h'(1)=f'(f(1)) f'(1)=f'(6) f'(1)$                $\left[∵ f'(x)=3 x^2+3\right]$

$\Rightarrow h'(1)=(3 \times 36+3)(3+3)=666$