Two coherent monochromatic light beams of intensities I and 16 I, respectively, superimpose over each other. The resultant intensity in the constructive interference is |
16 I 25 I 9 I 15 I |
25 I |
The correct answer is Option (2) → 25 I For two coherent light beams with intensities $I_1$ and $I_2$, the resultant intensity for constructive interference is: $I_{\text{max}} = I_1 + I_2 + 2 \sqrt{I_1 I_2}$ Given: $I_1 = I$, $I_2 = 16 I$ $I_{\text{max}} = I + 16 I + 2 \sqrt{I \cdot 16 I} = 17 I + 2 \sqrt{16 I^2} = 17 I + 2 \cdot 4 I = 17 I + 8 I = 25 I$ Answer: $I_{\text{max}} = 25 I$ |