Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Algebra

Question:

If $A=\begin{bmatrix} 1 & 2\\3 & 4\end{bmatrix}, B=\begin{bmatrix}a & 0\\0 & b \end{bmatrix}; a, b \in N, $ then

Options:

There can't exist any B such that AB =BA

There exist more than one B, but finite in number when AB = BA

There exists exactly one B, when AB =BA

There exist infinite B, when AB =BA

Correct Answer:

There exist infinite B, when AB =BA

Explanation:

The correct answer is Option (4) → There exist infinite B, when AB = BA

$AB=BA$

$\begin{bmatrix} 1 & 2\\3 & 4\end{bmatrix}\begin{bmatrix}a & 0\\0 & b \end{bmatrix}=\begin{bmatrix}a & 0\\0 & b \end{bmatrix}\begin{bmatrix} 1 & 2\\3 & 4\end{bmatrix}$

$\begin{bmatrix} a & 2b\\3a & 4b\end{bmatrix}=\begin{bmatrix} a & 2b\\3a & 4b\end{bmatrix}$

$⇒a=b$

Infinite number of B when AB = BA