If $f(x)$ and $g(x)$ are continuous functions in $[0, a]$ such that $f(x) = f(a-x)$ and $g(x) + g(a - x) = a$ then $\int\limits_0^af(x)g(x)dx =$ |
$a\int\limits_0^af(x)dx$ $a\int\limits_0^ag(x)dx$ $\frac{a}{2}\int\limits_0^af(x)dx$ $\frac{a}{2}\int\limits_0^ag(x)dx$ |
$\frac{a}{2}\int\limits_0^af(x)dx$ |
The correct answer is Option (3) → $\frac{a}{2}\int\limits_0^af(x)dx$ Given: $f(x) = f(a-x)$ and $g(x) + g(a-x) = a$ Consider $I = \int_0^a f(x) g(x) \, dx$ Substitute $x \to a-x$: $dx = -dx'$, limits: $x=0 \to a$, $x=a \to 0$ $I = \int_0^a f(a-x) g(a-x) \, dx = \int_0^a f(x) g(a-x) \, dx$ (using $f(a-x)=f(x)$) Add the two expressions: $2I = \int_0^a f(x) [g(x) + g(a-x)] \, dx = \int_0^a f(x) \cdot a \, dx = a \int_0^a f(x) \, dx$ Thus: $I = \frac{a}{2} \int_0^a f(x) \, dx$ Answer: $\displaystyle \int_0^a f(x) g(x) \, dx = \frac{a}{2} \int_0^a f(x) \, dx$ |