Match List I with List II
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-IV, B-I, C-III, D-II A-III, B-II, C-IV, D-I A-II, B-IV, C-I, D-III A-I, B-III, C-II, D-IV |
A-II, B-IV, C-I, D-III |
A. $\displaystyle \lim_{x\to 0}\frac{(1-\cos 2x)\sin 5x}{x^2\sin 3x} =\lim_{x\to 0}\frac{\left(\frac{(2x)^2}{2}\right)\,(5x)}{x^2\,(3x)} =\frac{10}{3}$ B. $\displaystyle \lim_{x\to \infty}\frac{(3x-5)(2x-7)}{(4x-9)(5x-3)} =\lim_{x\to \infty}\frac{6x^2+\cdots}{20x^2+\cdots} =\frac{6}{20}=\frac{3}{10}$ C. $\displaystyle \lim_{x\to 0}\frac{2\sin^2 3x}{x^2} =\lim_{x\to 0}\,2\left(\frac{\sin 3x}{x}\right)^2 =2\cdot 3^2=18$ D. $\displaystyle \lim_{x\to \frac{\pi}{4}}\frac{1-\cos^3 x}{2-\cot x-\cot^3 x} =\frac{3}{4}$ |