If x - y + z = 0 find \(\frac{{y}^{2}}{2xz}\) - \(\frac{{x}^{2}}{2yz}\) - \(\frac{{z}^{2}}{2xy}\) |
\(\frac{3}{2}\) \(\frac{1}{2}\) -6 \(\frac{-3}{2}\) |
\(\frac{3}{2}\) |
Put x = z = 1 and y = 2 = \(\frac{{y}^{2}}{2xz}\) - \(\frac{{x}^{2}}{2yz}\) - \(\frac{{z}^{2}}{2xy}\) = \(\frac{4}{2}\) - \(\frac{1}{4}\) - \(\frac{1}{4}\) = \(\frac{3}{2}\) |