Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

The value of $\int\limits_0^{2 \pi} \cos ^5 x d x$, is

Options:

0

$\pi$

$2 \pi$

$\pi / 2$

Correct Answer:

0

Explanation:

Let $f(x)=\cos ^5 x$. Then,

$f(2 \pi-x)=\{\cos (2 \pi-x)\}^5=\cos ^5 x$

∴  $\int\limits_0^{2 \pi} \cos ^5 x d x=2 \int_0^\pi \cos ^5 x d x$          [Using Prop. $\int\limits_0^{2 a} f(x) d x=\left\{\begin{array}{cl}2 \int\limits _0^a f(x) d x & , \text { if } f(2 a-x)=f(x) \\ 0, & \text { if } f(2 a-x)=-f(x)\end{array}\right.$]

Hence, $\int\limits_0^{2 \pi} \cos ^5 x d x=2 \int\limits_0^\pi \cos ^5 x d x=2 \times 0=0$

Now, $f(\pi-x)=\{\cos (\pi-x)\}^5=-\cos ^5 x=-f(x)$

∴  $\int\limits_0^\pi \cos ^5 x d x=0$         [Using Prop. $\int\limits_{-a}^a f(x) d x=\int\limits_0^a\{f(x)+f(-x)\} d x$]