The point on the curve $y^2=x$ where tangent makes 45° angle with x-axis is: |
$\left(\frac{1}{2}, \frac{1}{4}\right)$ $\left(\frac{1}{4}, \frac{1}{2}\right)$ $(4,2)$ $(1,1)$ |
$\left(\frac{1}{4}, \frac{1}{2}\right)$ |
The correct answer is Option (2) - $\left(\frac{1}{4}, \frac{1}{2}\right)$ $y^2=x$ ...(I) so differentiating wrt x $2y\frac{dy}{dx}=1⇒\frac{dy}{dx}=\frac{1}{2y}$ when tangent makes 45° with x axis $⇒\frac{dy}{dx}=\tan 45°=1$ $⇒\frac{1}{2y}=1$ so $y=\frac{1}{2}$ from (1) → $x=\frac{1}{4}$ point → $\left(\frac{1}{4}, \frac{1}{2}\right)$ |