Area of region bounded by the curve $y^2=4 x$, y-axis and the line y = 3 is: |
2 $\frac{9}{3}$ $\frac{9}{4}$ $\frac{9}{2}$ |
$\frac{9}{4}$ |
The correct answer is Option (3) → $\frac{9}{4}$ $y^2=4x$ so $x=\frac{y^2}{4}$ ⇒ required area = $\int\limits_0^3\frac{y^2}{4}dy$ $⇒\left[\frac{y^3}{12}\right]_0^3$ $=\frac{9}{4}$ sq. units |