The area of the region given by{$(x, y): y ≥ x^2, y ≤ |x| + 2$} __________ is |
16 sq.units $\frac{10}{3}$ sq.units $\frac{20}{3}$ sq.units 10 sq.units |
$\frac{20}{3}$ sq.units |
The correct answer is Option (3) → $\frac{20}{3}$ sq.units $y ≥ x^2, y ≤ |x|+2$ I = II By symmetry in region II → $y=x+2$ $y=x^2$ so $x^2=x+2$ $x=2,-1$ $x≠-1$ so $x=2$ only $y=4$ so area = 2 × ar(II) $=2×(\int\limits_0^4\sqrt{y}dy-\int\limits_2^4y-2dy)$ $=2\left(\left[\frac{2}{3}y^{\frac{3}{2}}\right]_0^4-\left[\frac{y^2}{2}-2y\right]_2^4\right)$ $=\frac{20}{3}$ sq. units |