Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

$\int e^{\tan ^{-1} x}\left(\frac{1+x+x^2}{1+x^2}\right) d x$ is equal to

Options:

$x e^{\tan ^{-1} x}+c$

$x^2 e^{\tan ^{-1} x}+c$

$\frac{1}{x e^{\tan ^{-1} x}}+c$

$\frac{1}{x^2} e^{\tan ^{-1} x}+c$

Correct Answer:

$x e^{\tan ^{-1} x}+c$

Explanation:

$I=\int e^p\left(\sec ^2 p+\tan p\right) d p$         (If $p=\tan ^{-1} x \Rightarrow x=\tan p \Rightarrow d x=\sec ^2 p d p$)

$=e^{p} \tan p=x e^{\tan ^{-1} x}+c$

Hence (1) is the correct answer.