Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Determinants

Question:

Match List - I with List - II.

List – I (Function y)

List – II (Derivative $\frac{dy}{dx}$)

 (A) 

 $y=\cos \sqrt{x}$

 (I)

 $\frac{\sec (\tan \sqrt{x}) \tan (\tan \sqrt{x}) \sec ^2 \sqrt{x}}{2 \sqrt{x}}$

 (B)

 $y=\sqrt{\sin x}$

 (II)

 $-3 x^2 \cos \left(x^3\right) \sin \left(\sin \left(x^3\right)\right)$

 (C)

 $y=\sec (\tan \sqrt{x})$

 (III) 

 $\frac{\cos x}{2 \sqrt{\sin x}}$

 (D)

 $y=\cos \left(\sin \left(x^3\right)\right)$

 (IV) 

 $\frac{-1}{2 \sqrt{x}} \sin \sqrt{x}$

Choose the correct answer from the options given below :

Options:

(A)-(I), (B)-(IV), (C)-(II), (D)-(III)

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

(A)-(III), (B)-(II), (C)-(IV), (D)-(I)

(A)-(II), (B)-(I), (C)-(III), (D)-(IV)

Correct Answer:

(A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Explanation:

 Functions

 Their Derivatives

 (A) 

 $y=\cos \sqrt{x}$

$y' = \frac{-\sin \sqrt{x}}{2 \sqrt{x}}$        →     (IV) 

 (B)

 $y=\sqrt{\sin x}$

 $y' = \frac{\cos x}{2 \sqrt{\sin x}}$           →     (III) 

 (C)

 $y=\sec (\tan \sqrt{x})$

 $y' = \frac{\sec (\tan \sqrt{x}) \tan (\tan \sqrt{x}) \sec ^2 \sqrt{x}}{2 \sqrt{x}}$        →     (I)

 (D)

 $y=\cos \left(\sin \left(x^3\right)\right)$

  $y' = -\sin \left(\sin \left(x^3\right)\right) \cos \left(x^3\right) (3 x^2)$         →     (II)