If $x^4 + x^{-4} = 2599$, then one of the values of $x - x^{-1}$, where x > 0, is equal to: |
9 7 5 8 |
7 |
If $K^2+\frac{1}{K^2}$ = n then, $K+\frac{1}{K}=\sqrt {n + 2}$ If $x^4 + x^{-4} = 2599$ Then one of the values of $x - x^{-1}$ = ? If $x^4 + x^{-4} = 2599$ then $x^2 + x^{-2}$ = \(\sqrt {2599 + 2}\) = 51 $x - x^{-1}$ = \(\sqrt {51 - 2}\) = 7 |