$\underset{x→1}{\lim}\frac{x\sin\{x\}}{x-1}$, where {x} denotes the fractional part of x, is equal to |
-1 0 1 does not exist |
does not exist |
for $\{x\}$ $LHL=\underset{x→1^-}{\lim}\{x\}=\underset{x→1^-}{\lim}(x-[x])=1-0=+1$ $RHL=\underset{x→1^+}{\lim}\{x\}=\underset{x→1^+}{\lim}(x-[x])=1-1=0$ for function $LHL=\underset{x→1^-}{\lim}\frac{x\sin\{x\}}{x-1}=\frac{\sin\{x\}}{0^-}=-∞$ $RHL=\underset{x→1^-}{\lim}\frac{x\sin\{x\}}{x-1}=\frac{x\sin\{x\}}{\{x\}}=1$ LHL ≠ RHL ⇒ limit doesn't exist |