Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

Statement-1: If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then $\frac{OL}{OA}+\frac{OM}{OB}=\frac{ON}{OC}$

Statement-2: Three points with position vectors $\vec a, \vec b,\vec c$ are collinear iff there exist scalars $x, y, z$ not all zero such that $x\vec a+y\vec b +z\vec c =\vec 0$, where $x + y + z = 0$.

Options:

Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1.

Statement-1 is True, Statement-2 is False.

Statement-1 is False, Statement-2 is True.

Correct Answer:

Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

Explanation:

Statement-2 is true.

Let $\vec{OL} = x\vec{OA}, \vec{OM} = y\vec{OB}$ and $\vec{ON} =z\vec{OC}$. Then,

$|\vec{OL}|=x|\vec{OA}||\vec{OM}|=y|\vec{OB}|$ and $|\vec{ON}|=z|\vec{OC}|$

$⇒x=\frac{OL}{OA},y=\frac{OM}{OB},z=\frac{ON}{OC}$

Taking O as the origin, let the position vectors of A, B, C be $\vec a,\vec b$ and $\vec c$ respectively.

In ΔOLN, we have

$\vec{OL} + \vec{LN} = \vec{ON}$

$⇒\vec{ON} -\vec{OL}+\vec{OM}$

$⇒z\vec{OC} = x\vec{OA} + y\vec{OB}$

$⇒x\vec{OA} + y\vec{OB}-z\vec{OC}=\vec 0⇒ x\vec a+y\vec b+(-z) \vec c = \vec 0$

But, points A, B, C are collinear.

$∴x\vec a+y\vec b+(-z)\vec c=\vec 0$

$⇒x+y-z=0⇒x+y=z⇒\frac{OL}{OA}+\frac{OM}{OB}=\frac{ON}{OC}$

So statement-1 is also true and statement-2 is a correct explanation for statement-1.