Statement-1: If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then $\frac{OL}{OA}+\frac{OM}{OB}=\frac{ON}{OC}$ Statement-2: Three points with position vectors $\vec a, \vec b,\vec c$ are collinear iff there exist scalars $x, y, z$ not all zero such that $x\vec a+y\vec b +z\vec c =\vec 0$, where $x + y + z = 0$. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. |
Statement-2 is true. Let $\vec{OL} = x\vec{OA}, \vec{OM} = y\vec{OB}$ and $\vec{ON} =z\vec{OC}$. Then, $|\vec{OL}|=x|\vec{OA}||\vec{OM}|=y|\vec{OB}|$ and $|\vec{ON}|=z|\vec{OC}|$ $⇒x=\frac{OL}{OA},y=\frac{OM}{OB},z=\frac{ON}{OC}$ Taking O as the origin, let the position vectors of A, B, C be $\vec a,\vec b$ and $\vec c$ respectively. In ΔOLN, we have $\vec{OL} + \vec{LN} = \vec{ON}$ $⇒\vec{ON} -\vec{OL}+\vec{OM}$ $⇒z\vec{OC} = x\vec{OA} + y\vec{OB}$ $⇒x\vec{OA} + y\vec{OB}-z\vec{OC}=\vec 0⇒ x\vec a+y\vec b+(-z) \vec c = \vec 0$ But, points A, B, C are collinear. $∴x\vec a+y\vec b+(-z)\vec c=\vec 0$ $⇒x+y-z=0⇒x+y=z⇒\frac{OL}{OA}+\frac{OM}{OB}=\frac{ON}{OC}$ So statement-1 is also true and statement-2 is a correct explanation for statement-1. |