The length of the three sides of a right-angled triangle are (x-1)cm, (x+1) cm and (x +3) cm, respectively. The hypotenuse of the right-angled triangle (in cm) is : |
6 10 12 7 |
10 |
Here, (x + 3) is greater than the other sides for each value for x We can take (x + 3) as the hypotenuse So, \( {(x + 3) }^{2 } \) = \( {(x + 1) }^{2 } \) + \( {(x - 1) }^{2 } \) ⇒ \( {x }^{2 } \) + 6x + 9 = 2(\( {x }^{2 } \) + 1) ⇒ \( {x }^{2 } \) + 6x + 9 = 2\( {x }^{2 } \) + 2 ⇒ 2\( {x }^{2 } \) - \( {x }^{2 } \) - 6x + 2 - 9 = 0 ⇒ \( {x }^{2 } \) - 6x - 7 = 0 ⇒ \( {x }^{2 } \) - 7x + x - 7 = 0 ⇒ x(x - 7) + 1(x - 7) = 0 ⇒ (x + 1)(x - 7) = 0 ⇒ x + 1 = 0 ⇒ x = -1 ('-' will be neglected) ⇒ x - 7 = 0 ⇒ x = 7 Then, the value of (x + 3) = (7 + 3)cm = 10 cm Therefore, the hypotenuse of the right angled triangle is 10 cm. |