A resistance of $20 Ω$ is connected to a source of an alternating potential $V=220 \sin (100\, πt)$. The time taken by the current to change from the peak value to rms value, is |
$0.2\,s$ $0.25\,s$ $2.5×100^{-3}s$ $2.5×10^{-3}s$ |
$2.5×10^{-3}s$ |
The correct answer is Option (4) → $2.5×10^{-3}s$ $ I = \frac{V}{R} = 11 \sin 100\pi t$ $I_{peak} = 11$ $ 11 = 11 \sin 100\pi t_1 \Rightarrow \sin 100\pi t_1 = \sin \frac{\pi}{2}$ $ t_1 = \frac{1}{200}$ $ I_{rms} = \frac{11}{\sqrt 2} = 11 \sin 100\pi t_2 \Rightarrow \sin 100\pi t_2 = \frac{\pi}{4}$ $\Rightarrow t_2 = \frac{1}{400}$ $ \Delta t = t_1 - t_2 = \frac{1}{200} - \frac{1}{400} = \frac{1}{400} = 2.5\times 10^{-3}$ |