The ratio of lengths of two wires is 2 : 3 and the ratio of their resistivities is 3 : 2. If they have the same resistance then the ratio of their respective diameters is |
4 : 9 9 : 4 $\sqrt{2}:\sqrt{3}$ 1 : 1 |
1 : 1 |
The correct answer is Option (4) → 1 : 1 Given: Length ratio: $\frac{L_1}{L_2} = \frac{2}{3}$ Resistivity ratio: $\frac{\rho_1}{\rho_2} = \frac{3}{2}$ Same resistance: $R_1 = R_2$ Resistance of a wire: $R = \rho \frac{L}{A} = \rho \frac{4 L}{\pi d^2}$ (since $A = \pi d^2 /4$) Equating resistances: $\rho_1 \frac{L_1}{d_1^2} = \rho_2 \frac{L_2}{d_2^2}$ Substitute ratios: $\frac{3}{2} \cdot \frac{2}{3} \cdot \frac{1}{d_1^2} = \frac{1}{d_2^2} \Rightarrow \frac{1}{d_1^2} = \frac{1}{d_2^2}$ Wait, calculate carefully: $\frac{\rho_1 L_1}{d_1^2} = \frac{\rho_2 L_2}{d_2^2}$ Substitute values: $\rho_1 L_1 / \rho_2 L_2 = d_1^2 / d_2^2$ $\frac{3/2 \cdot 2/3}{1} = 1 \Rightarrow \frac{d_1^2}{d_2^2} = 1 \Rightarrow d_1 : d_2 = 1 : 1$ Answer: Ratio of diameters $d_1 : d_2 = 1 : 1$ |