If $A=\begin{bmatrix}0&l&-3\\-2&0&1\\m&-1&0\end{bmatrix}$ is a skew symmetric matrix, then |
$l=3, m = 2$ $l=-3, m = 2$ $l=2, m = 3$ $l=2, m =-3$ |
$l=2, m = 3$ |
The correct answer is Option (3) → $l=2, m = 3$ Given: A is a skew-symmetric matrix. Property: A matrix $A$ is skew-symmetric if $A^T = -A$ Let: $A = \begin{bmatrix} 0 & l & -3 \\ -2 & 0 & 1 \\ m & -1 & 0 \end{bmatrix}$ Then: $A^T = \begin{bmatrix} 0 & -2 & m \\ l & 0 & -1 \\ -3 & 1 & 0 \end{bmatrix}$ Now, set $A^T = -A$: $\begin{bmatrix} 0 & -2 & m \\ l & 0 & -1 \\ -3 & 1 & 0 \end{bmatrix} = - \begin{bmatrix} 0 & l & -3 \\ -2 & 0 & 1 \\ m & -1 & 0 \end{bmatrix}$ ⇒ Compare elements: $-2 = -l \Rightarrow l = 2$ $m = -(-3) \Rightarrow m = 3$ Final Answer: l = 2 and m = 3 |