If $f(x)=mlogx+nx^2 + x $ has extreme values at x= 1 and x = -2, then the values of m and n respectively are : |
-1, 0 -2, 1 3, 6 $-2, \frac{1}{2}$ |
$-2, \frac{1}{2}$ |
The correct answer is Option (4) → $-2, \frac{1}{2}$ $\frac{d(f(x))}{dy}=\frac{d(m\log x+nx^2+x)}{dy}$ $=\frac{m}{x}+2nx+1$ $f'(1)=m+2n+1=0$ $⇒m+2n=-1$ ....(1) $f'(-2)=\frac{-m}{2}-4n+1=0$ $-m-8n=-2$ $m+8n=2$ .....(2) Eq. (2) - 4 × Eq. (1) $-3m=6$ $m=-\frac{1}{2},n=-2$ |