Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Linear Programming

Question:

The maximum value of $z=2 x+3 y$ subject to constraints $3 x-3 y ≥ 0,2 x+2 y ≤ 12, x ≥ 0, y ≥ 0$ occurs at the point

Options:

$(0,0)$

$(6,0)$

$(0,6)$

$(3,3)$

Correct Answer:

$(3,3)$

Explanation:

The correct answer is Option (4) - $(3,3)$

$z=2 x+3 y$

$3 x-3 y ≥ 0,2 x+2 y ≤ 12$

$⇒x-y≥ 0,⇒x+y≤6$  $x, y ≥ 0$

finding intersection point

$x=y$

$⇒x+y=6$

$⇒x=y=3$

corner points   $z=2 x+3 y$
$A(0,0)$ $Z_A=0$
$B(3,3)$ $Z_B=15$
$C(6,0)$ $Z_C=12$

maximum occurs at $B(3,3)$