The cell $Zn|Zn^{2+}(1M)||Cu^{2+}(1M)|Cu. (E_{cell}^° = 1.10 V)$ was allowed to be completely discharged at $298 K$. The relative concentration of $Zn^{2+}/Cu^{2+}$ is: |
$9.65 × 10^4$ Antilog 24.8 37.7 $10^{37.3}$ |
$10^{37.3}$ |
The correct answer is Option 4. $10^{37.3}$ The given cell is \(Zn|Zn^{2+}(1M)||Cu^{2+}(1M)|Cu\) Thus, the reaction may be represented as: \(Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu\) Given, \(E^o_{cell} = 1.10 V\) When the cell is completely discharged, then \(E_{cell} = 0\) \(∴ E_{cell} = E^o_{cell} - \frac{0.059}{2}log\frac{[Zn^{2+}]}{[Cu^{2+}]}\) \(⇒ 0 = 1.1 - \frac{0.059}{2}log\frac{[Zn^{2+}]}{[Cu^{2+}]}\) \(⇒ 1.1 = \frac{0.059}{2}log\frac{[Zn^{2+}]}{[Cu^{2+}]}\) \(⇒ \frac{2 \times 1.1}{0.059}= log\frac{[Zn^{2+}]}{[Cu^{2+}]}\) \(⇒ log\frac{[Zn^{2+}]}{[Cu^{2+}]} = 37.3\) \(⇒ \frac{[Zn^{2+}]}{[Cu^{2+}]} = 10^{37.3}\) |