A solution of the vector equation $\vec r×\vec b =\vec a×\vec b$, where $\vec a,\vec b$ are two given vectors, is where λ is a parameter. |
$\vec r=λ\vec b$ $\vec r=\vec a+λ\vec b$ $\vec r=\vec b+λ\vec a$ $\vec r=λ\vec a$ |
$\vec r=\vec a+λ\vec b$ |
We have, $\vec r×\vec b =\vec a×\vec b$ $⇒\vec r×\vec b -\vec a×\vec b=\vec 0$ $⇒(\vec r-\vec a)×\vec b=\vec 0$ $⇒\vec r-\vec a$ is parallel to $\vec b$ $⇒\vec r-\vec a=λ\vec b$ for some scalar λ $⇒\vec r=\vec a+λ\vec b$ is the required solution. |