In $\triangle A B C, A C=8.4 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$. $\mathrm{P}$ is a point on $\mathrm{AB}$ such that $\mathrm{CP}=11.2 \mathrm{~cm}$ and $\angle A C P=\angle B$. What is the length (in $\mathrm{cm}$) of $\mathrm{BP}$ ? |
4.12 2.8 3.78 3.6 |
3.78 |
It is given that ∠ACP = ∠B In Triangle ACP and ABC , ∠ACP = ∠B ∠A is common in both So, △ACP ∼ △ABC ⇒ \(\frac{AC}{AB}\) = \(\frac{PC}{BC}\) = \(\frac{AP}{AC}\) \(\frac{AC}{AB}\) = \(\frac{PC}{BC}\) \(\frac{8.4}{AB}\) = \(\frac{11.2}{14}\) AB = \(\frac{8.4 × 14 }{11.2}\) AB = 10.5 Now, \(\frac{PC}{BC}\) = \(\frac{AP}{AC}\) \(\frac{11.2}{14}\) = \(\frac{AP}{ 8.4}\) AP = 6.72 Now, BP = AB - AP = 10.5 - 6.72 = 3.78 |