$\underset{x→0}{\lim}\frac{1}{x}(\int_y^ce^{\sin^2t}dt-\int_{x+y}^{c}e^{\sin^2t}dt)$ is equal to (where c is a constant) |
$e^{\sin^2y}$ $\sin 2y e^{\sin^2 y}$ 0 none of these |
$e^{\sin^2y}$ |
$\underset{x→0}{\lim}\frac{1}{x}\left[\int_y^ce^{\sin^2t}dt-\int_{x+y}^{c}e^{\sin^2t}dt\right]$ From property of integration $=\underset{x→0}{\lim}\frac{1}{x}.\left[\int_y^ce^{\sin^2t}dt+\int_{c}^{x+y}e^{\sin^2t}dt\right]$ $=\underset{x→0}{\lim}\frac{1}{x}.\int_y^{x+y}e^{\sin^2t}dt$ According to L' Hospital Rule. $=\underset{x→0}{\lim}e^{\sin^2(x+y)}\left(1+\frac{dy}{dx}\right)-e^{\sin^2y}\frac{dy}{dx}$ $=\underset{x→0}{\lim}e^{\sin^2(x+y)}+\underset{x→0}{\lim}\frac{e^{\sin^2(x+y)}-e^{\sin^2y}}{x}.\underset{x→0}{\lim}\frac{dy}{dx}.x$ $=e^{\sin^2y}+0$ $=e^{\sin^2y}$ |