$\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\theta \neq \frac{\pi}{2}$) ? |
$\frac{1+\cos \theta}{\sin \theta}$ $\frac{\tan \theta+1}{\tan \theta-1}$ $\frac{\tan \theta-1}{\tan \theta+1}$ $\frac{\cos \theta}{1-\sin \theta}$ |
$\frac{\cos \theta}{1-\sin \theta}$ |
Given :- \(\frac{1 + sin θ}{cos θ}\) Multiply and divide by ( 1 - sin θ ) = \(\frac{1 + sin θ}{cos θ}\) × \(\frac{1 - sin θ}{1 - sin θ}\) = \(\frac{(12 - sin2 θ}{cos θ ( 1 - sin θ)}\) = \(\frac{(cos2 θ}{cos θ ( 1 - sin θ)}\) = \(\frac{(cos θ}{( 1 - sin θ)}\) So , Option 4 is correct . |