If the curve $y=x^2+b x+c$ touches the line y = x at the point (1, 1), then the set of values of x for which the curve has a negative gradient is |
$(-\infty, 1 / 2)$ $(1 / 2, \infty)$ $(-\infty,-1 / 2)$ $(-1 / 2, \infty)$ |
$(-\infty, 1 / 2)$ |
We have, $y=x^2+b x+c$ ..........(i) This curve touches y = x at P(1, 1). Therefore, P lies on the curve and slope of the tangent to the curve at P is equal to the slope of the line y = x. ∴ $1=1+b+c$ and $\left(\frac{d y}{d x}\right)_P=1$ $\Rightarrow b+c=0$ and $2+b=1 \Rightarrow b=-1$ and c = 1 Substituting the values of b and c in (i), we have $y=x^2-x+1 \Rightarrow \frac{d y}{d x}=2 x-1$ For negative gradient, we must have $\frac{d y}{d x}<0 \Rightarrow 2 x-1<0 \Rightarrow x<\frac{1}{2} \Rightarrow x \in(-\infty, 1 / 2)$ |