If $a=\frac{\sqrt{5}+2}{\sqrt{5}-2}$ and $b=\frac{\sqrt{5}-2}{\sqrt{5}+2}$, then the value of $2a^2 + 2b^2 - 5ab $ is equal to : |
693 649 635 639 |
639 |
We know that, (a + b)2 = a2 + b2 + 2ab (a + b)(a – b) = a2 – b2 $a=\frac{\sqrt{5}+2}{\sqrt{5}-2}$ = a = [(√5 + 2)( (√5 + 2)]/[(√5 – 2)(√5 + 2)] = a = [(√5 + 2)2]/[(√5)2 – (2)2] = a = [5 + 4 + 4√5]/(5 – 4) = a = (9 + 4√5) Also, $b=\frac{\sqrt{5}-2}{\sqrt{5}+2}$ = b = [(√5 – 2)(√5 - 2)]/[(√5 + 2)(√5 – 2)] = b = [(√5 – 2)2]/[(√5)2 – (2)2] = b = [5 + 4 – 4√5]/(5 – 4) = b = (9 – 4√5) Now, $2a^2 + 2b^2 - 5ab $ = $2((9 + 4√5))^2 + 2((9 – 4√5))^2 - 5((9 + 4√5))((9 – 4√5)) $ = 2(81 + 80 + 72√5) + 2(81 + 80 - 72√5) - 5 = 322 + 322 - 5 = 639 |