Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Numbers, Quantification and Numerical Applications

Question:

Match List-I with List-II

List-I List-II
A. The solution set of the inequality $3x+7 > 12 $ I. $[-1, ∞]$
B. The solution set of the inequality $\frac{3x+5}{2}≥1, x \in R$ II. $[\frac{17}{18}, ∞]$
C. The solution set of the inequality $2x+5 < 7x + 9, x \in R $ is, III. $(\frac{5}{3}, ∞)$
D. The solution set of the inequality $6x-5≥-2x+12, x \in R $ is, IV. $(-\frac{4}{5}, ∞)$

Choose the correct answer from the options given below :

Options:

A-III, B-IV, C-I, D-II

A-III, B-I, C-IV, D-II

A-I, B-III, C-IV, D-II

A-III, B-I, C-II, D-IV

Correct Answer:

A-III, B-I, C-IV, D-II

Explanation:

The correct answer is Option (2) → A-III, B-I, C-IV, D-II

(A) $3x+7>12$

$⇒3x>5$

$⇒x>\frac{5}{3}⇒x∈\left(\frac{5}{3}, ∞\right)$ → (III)

(B) $\frac{3x+5}{2}≥1$

$⇒3x+5≥2$

$⇒3x≥-3$

$⇒x≥-1⇒x∈[-1,∞)$   → (I)

(C) $2x+5<7x+9$

$⇒5x>-4$

$⇒x>-\frac{4}{5}⇒x∈\left(\frac{-4}{5}, ∞\right)$   → (IV)

(D) $6x-5≥-2x+12$

$8x≥17$

$x≥\frac{17}{8}⇒x∈\left(\frac{17}{8}, ∞\right)$   → (II)