If $C(x)=15x^3-3\sqrt{5}x+\sqrt{7}$ represents the total cost of producing x items, the slope of the marginal cost function at x =1 is : |
$45-3\sqrt{5}$ $90+3\sqrt{5}$ $\frac{15x^4}{4}-\frac{3\sqrt{5}}{2}+\sqrt{7}x+C$ 90 |
90 |
The correct answer is Option (4) → 90 The Marginal Cost (MC) function is, $MC(x)=\frac{d}{dx}C(x)$ $=\frac{d}{dx}(15x^3-3\sqrt{5}x+\sqrt{7})$ $=45x^2-3\sqrt{5}$ Slope = $\frac{dMC(x)}{dx}=90x$ Slope at $x=1$ = 90 |