Find the range of $f(x) = \sin^{-1}(x - [x])$, where [.] represents the greatest integer function. |
$[0,\frac{π}{2})$ $[\frac{π}{2},\frac{π}{2})$ $[0,-\frac{π}{2})$ $[-\frac{π}{2},0)$ |
$[0,\frac{π}{2})$ |
We have $f(x) = \sin^{-1}(x - [x])=\sin^{-1}\{x\}$ We know that $\{x\} ∈ [0, 1)$ For these values of {x}, $\sin^{-1}\{x\}$ is well defined. Now $0≤\{x\}<1$ $⇒\sin^{-1}0 ≤ \sin^{-1}\{x\}<\sin^{-1}1$ $⇒0 ≤ \sin^{-1}\{x\}<π/2$ Hence range of the function is $[0,π/2)$ |