The general solution of the differential equation $\frac{dy}{dx}= e^{ax+by}$ is: (Here C is an arbitrary constant) |
$be^{-by}+ae^{ax} =C$ $-be^{-by}+ae^{ax} = C$ $ae^{-by}+be^{ax} = C$ $e^{ax} +e^{by}= C$ |
$ae^{-by}+be^{ax} = C$ |
The correct answer is Option (3) → $ae^{-by}+be^{ax} = C$ Given differential equation: \[ \frac{dy}{dx} = e^{ax + by} \] Rewrite as: \[ \frac{dy}{dx} = e^{ax} \cdot e^{by} \] Separate variables: \[ \frac{dy}{e^{by}} = e^{ax} dx \] Rewrite left side: \[ e^{-by} dy = e^{ax} dx \] Integrate both sides: \[ \int e^{-by} dy = \int e^{ax} dx \] Integrate left side: \[ \int e^{-by} dy = -\frac{1}{b} e^{-by} + C_1 \] Integrate right side: \[ \int e^{ax} dx = \frac{1}{a} e^{ax} + C_2 \] Combine constants \(C = C_2 - C_1\), so: \[ -\frac{1}{b} e^{-by} = \frac{1}{a} e^{ax} + C \] Multiply both sides by \(-b\): \[ e^{-by} = -\frac{b}{a} e^{ax} - bC \] Rewrite constant \(-bC\) as \(K\), arbitrary constant: \[ e^{-by} + \frac{b}{a} e^{ax} = K \] \(a{e^{-by} + be^{ax} = C}\) |