The electric field at the centre of a semi-circular arc of radius 'r', which is charged uniformly and has linear charge density $\lambda$ is: |
$\frac{\lambda}{4 \pi \varepsilon_0 r}$ $\frac{\lambda}{2 \pi \varepsilon_0 r^2}$ $\frac{\lambda^2}{2 \pi \varepsilon_0 r}$ $\frac{\lambda}{2 \pi \varepsilon_0 r}$ |
$\frac{\lambda}{2 \pi \varepsilon_0 r}$ |
The correct answer is Option (4) → $\frac{\lambda}{2 \pi \varepsilon_0 r}$ Semi-circular are has a linear charge density λ, so the total charge on the arc - $Q=λL=λπr$ and, $dE=\frac{Kλrdθ}{r^2}=\frac{Kλdθ}{r}$ $∴dE_y=dE\sin θ=\frac{Kλdθ}{r}\sin θ$ Hence, $\int dE_y=\int\limits_{-π/2}^{π/2}\frac{Kλ\sin θ}{r}dθ$ On evaluating the limits, $E_y=0$ But, $E_x=\frac{Kλ}{r}\int\limits_{-π/2}^{π/2}\cos θ\,dθ$ $=\frac{Kλ}{r}\left[\sin θ\right]_{-π/2}^{π/2}$ $=\frac{Kλ}{r}\left[\sin\left(\frac{π}{2}\right)-\sin\left(-\frac{π}{2}\right)\right]$ $=\frac{2Kλ}{r}$ |