Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Definite Integration

Question:

If $\int\limits_0^x\{t\} d t=\int\limits_0^{\{x\}} t d t$ (where $x>0, x \notin Z$ and {.} represents fractional part function), then

Options:

$x \in(0,1)$

$[x]=1$

$x \in(1,6)-I$

none of these

Correct Answer:

$x \in(0,1)$

Explanation:

Let $x \in(k, k+1)$, where $k \in Z$. Then,

$\int\limits_0^x\{t\} d t=\int\limits_0^{\{x\}} t d t$

$\Rightarrow \int\limits_0^k(t-[t]) d t+\int\limits_k^x(t-[t]) d t=\int\limits_0^{\{x\}} t d t$

$\Rightarrow \sum\limits_{r=1}^k \int\limits_{(r-1)}^r(t-[t]) d t+\int\limits_k^x(t-[t]) d t=\frac{1}{2}\{x\}^2$

$\Rightarrow \sum\limits_{r=1}^k \int\limits_{(r-1)}^r\{t-(r-1)\} d t+\int\limits_k^x(t-k) d t=\frac{1}{2}\{x\}^2$

$\Rightarrow \frac{1}{2} \sum\limits_{r=1}^k\left[-\{t-(r-1)\}^2\right]_{r-1}^r+\left[\frac{1}{2}(t-k)^2\right]_k^x=\frac{1}{2}\{x\}^2$

$\Rightarrow \sum\limits_{r=1}^k 1+(x-k)^2=\{x\}^2$

$\Rightarrow k+(x-k)^2=(x-k)^2$             $[∵ x \in(k, k+1) ∴ \{x\}=x-k]$

$\Rightarrow k=0$

∴  $x \in(0,1)$