The integrating factor of the differential equation $x\frac{dy}{dx}+2y =x^2 $ is : |
$x^2$ $2x$ $e^{2x}$ $e^x$ |
$x^2$ |
The correct answer is Option (1) → $x^2$ Dividing eq. by (x) we get $\frac{dy}{dx}+\frac{2}{x}y=x$ so I.F. = $e^{\int\frac{2}{x}dx}=e^{2\log x}=x^2$ $⇒I.F. =x^2$ |