A square board of side 36 cm is made into a box without top by cutting a square from each corner and folding up the flaps to form a box then maximum volume of the box is |
$2856\, cm^3$ $3256\, cm^3$ $3656\, cm^3$ $3456\, cm^3$ |
$3456\, cm^3$ |
The correct answer is Option (4) → $3456\, cm^3$ Side of square board = $36 \text{ cm}$ Cut square of side = $x$ Volume $V(x) = x(36 - 2x)^2$ $\frac{dV}{dx} = (36 - 2x)^2 - 4x(36 - 2x)$ $= (36 - 2x)(36 - 6x)$ Critical points: $x = 6 , 18$ $x = 18 \Rightarrow V = 0$ (not maximum) $x = 6 \Rightarrow$ volume maximum Maximum volume $= 6(36 - 12)^2$ $= 6(24)^2$ $= 3456 \text{ cm}^3$ |