If $\int\limits_0^1\left(3 x^2+2 x+5 k\right) d x=0$, then the value of k is: |
$\frac{3}{5}$ $-\frac{2}{5}$ $\frac{2}{5}$ $\frac{1}{5}$ |
$-\frac{2}{5}$ |
The correct answer is Option (2) - $-\frac{2}{5}$ $\int\limits_0^1\left(3 x^2+2 x+5 k\right) d x=0$ $⇒\left[x^3+x^2+5kx\right]_0^1=0$ $⇒1+1+5k=0⇒k=-\frac{2}{5}$ |