If $(\cos x)^y=(\sin y)^x$ then $\frac{dy}{dx}$ is: |
$\frac{\log_e \sin y-y \tan x}{\log_e \cos x + x \cot y}$ $\frac{\log_e \sin y+y \tan x}{\log_e \cos x + x \cos y}$ $\frac{\log_e \sin y+y \tan x}{\log_e \cos x - x \cot y}$ $\frac{\log_e \cos x - x \cos y}{\log_e \sin y+y \tan x}$ |
$\frac{\log_e \sin y+y \tan x}{\log_e \cos x - x \cot y}$ |
The correct answer is Option (3) → $\frac{\log_e \sin y+y \tan x}{\log_e \cos x - x \cot y}$ $(\cos x)^y=(\sin y)^x$ $\log((\cos x)^y)=\log((\sin y)^x)$ $y\log\cos x=x\log\sin y$ $\frac{d}{dx}[y\log(\cos x)]=\frac{d}{dx}[x\log(\sin y)]$ $-y\tan x+(\log(\cos x))\frac{dy}{dx}=x\cot y\frac{dy}{dx}+\log(\sin y)$ $⇒\frac{dy}{dx}=\frac{y\tan x+\log(\sin y)}{\log(\cos x)-x\cot y}$ |