If $x^3+y^3=xy,$ then $\frac{dy}{dx}$ is equal to : |
$\frac{y+3x^2}{3y^2+x}$ $\frac{y-3x^2}{3y^2-x}$ $\frac{y+3x^2}{3y^2-x}$ $\frac{2y-x^2}{y^2-3x}$ |
$\frac{y-3x^2}{3y^2-x}$ |
The correct answer is Option (2) → $\frac{y-3x^2}{3y^2-x}$ $x^3+y^3=xy$ Differentiate w.r.t 'x' $3x^2+3y^2\frac{dy}{dx}=y+x\frac{dy}{dx}$ $⇒\frac{dy}{dx}(3y^2-x)=y-3x^2$ $⇒\frac{dy}{dx}=\frac{y-3x^2}{3y^2-x}$ |