At a place the angle of dip is 30°. If the horizontal component of the earth's magnetic field is $B_{H}$, the total magnetic field of the earth will be: |
$B_{H} / 2$ $2 B_{H} / \sqrt{3}$ $B_{H} \sqrt{2}$ $B_{H} \sqrt{3}$ |
$2 B_{H} / \sqrt{3}$ |
The correct answer is Option (2) → $2 B_{H} / \sqrt{3}$ $\tan θ=\frac{B_V}{B_H}$ [formula] where, $\tan θ$, θ = Angle of Dip $B_V$ = Vertical component of earth magnetic field $B_H$ = Horizontal component of earth magnetic field $B=\sqrt{B_H^2+B_V^2}$ where, B = total magnetic field and, $B_V=B_H\tan θ$ $B=\sqrt{B_H^2+(B_H\tan θ)^2}$ $=B_H\sqrt{1+\tan^2θ}$ $=B_H\sec θ$ $=B_H\sec 30°$ $=B_H\frac{2}{\sqrt{3}}$ |