If R(x) denotes the revenue where $R(x)= 4000x-10x^2$ then maximum value of $R(x)$ occurs when x equals : |
100 200 1000 50 |
200 |
The correct answer is Option (2) → 200 $R(x)= 4000x-10x^2$ for critical points, $f'(c)=0$ $⇒4000-20c=0$ $⇒20c=4000$ $⇒c=200$ ∴ Revenue function is maximum at $x = 200$. |