$\int\frac{dx}{e^x+e^{-x}}$ is equal to |
$\tan^{-1}(e^x)+c$: $c$ is an arbitrary constant $\tan^{-1}(e^{-x})+c$: $c$ is an arbitrary constant $\log (e^x-e^{-x})+c$: $c$ is an arbitrary constant $\log (e^x+e^{-x})+c$: $c$ is an arbitrary constant |
$\tan^{-1}(e^x)+c$: $c$ is an arbitrary constant |
The correct answer is Option (1) → $\tan^{-1}(e^x)+c$: $c$ is an arbitrary constant Given integral: $\int \frac{dx}{e^x + e^{-x}}$ $= \int \frac{dx}{e^x + \frac{1}{e^x}} = \int \frac{e^x \, dx}{e^{2x} + 1}$ Put $e^x = \tan \theta \Rightarrow dx = \frac{1}{\tan \theta} \cdot \sec^2 \theta \, d\theta$ So, $e^x \, dx = \sec^2 \theta \, d\theta$ Therefore, $\int \frac{e^x \, dx}{e^{2x} + 1} = \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta + 1} = \int d\theta = \theta + C$ Now, since $e^x = \tan \theta \Rightarrow \theta = \tan^{-1}(e^x)$ |