Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Algebra

Question:

If $A=\begin{bmatrix} cos\alpha & -sin \alpha \\sin \alpha & cos\alpha \end{bmatrix}$, then AA' is :

Options:

$A^2$

Null matrix

A

Identity matrix

Correct Answer:

Identity matrix

Explanation:

The correct answer is Option (4) → Identity matrix

$A=\begin{bmatrix} \cos\alpha & -\sin \alpha \\\sin \alpha & \cos\alpha \end{bmatrix}$

$A^T=\begin{bmatrix} \cos\alpha & \sin \alpha \\-\sin \alpha & \cos\alpha \end{bmatrix}$

$AA^T=\begin{bmatrix} \cos^2\alpha+\sin^2\alpha&0 \\0&\cos^2\alpha+\sin^2\alpha \end{bmatrix}$

$=\begin{bmatrix} 1a & 0 \\0 & 1 \end{bmatrix}$  $[\sin^2\alpha+\cos^2\alpha=1]$