If $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ then $\frac{dy}{dx}$ is equal to : |
$-\sqrt[3]{\frac{y}{x}}$ $-3\sqrt\frac{y}{x}$ $\sqrt[3]{\frac{y}{x}}$ $-\sqrt\frac{y}{x}$ |
$-\sqrt[3]{\frac{y}{x}}$ |
The correct answer is Option (1) → $-\sqrt[3]{\frac{y}{x}}$ $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ $⇒\frac{2}{3}\sqrt[3]{\frac{1}{x}}+\frac{2}{3}\sqrt[3]{\frac{1}{y}}\frac{dy}{dx}=0$ $⇒\sqrt[3]{\frac{1}{x}}=-\sqrt[3]{\frac{1}{y}}\frac{dy}{dx}$ $⇒-\left(\sqrt[3]{\frac{y}{x}}\right)=\frac{dy}{dx}$ |