Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Applications of Derivatives

Question:

For $y=xe^x$, which of the following is correct ?

Options:

$x\frac{d^2y}{dx^2}-x\frac{dy}{dx}-y=0$

$x\frac{d^2y}{dx^2}-y\frac{dy}{dx}-x=0$

$x\frac{d^2y}{dx^2}+x\frac{dy}{dx}+y=0$

$y\frac{d^2y}{dx^2}-y\frac{dy}{dx}-x=0$

Correct Answer:

$x\frac{d^2y}{dx^2}-x\frac{dy}{dx}-y=0$

Explanation:

The correct answer is Option (1) → $x\frac{d^2y}{dx^2}-x\frac{dy}{dx}-y=0$

$y=xe^x$ so $\frac{dy}{dx}=xe^x+e^x$

or $\frac{dy}{dx}=y+e^x$

so $\frac{d^2y}{dx^2}=\frac{dy}{dx}+e^x$ [we know that $\frac{y}{x}=e^x$]

so $\frac{d^2y}{dx^2}=\frac{dy}{dx}+\frac{y}{x}$

or $x\frac{d^2y}{dx^2}-x\frac{dy}{dx}-y=0$