$\int\limits_0^{\pi/2}\frac{\sin^8 x}{\sin^8x + \cos^8 x}dx$ is equal to |
$\frac{π}{2}$ $\frac{π}{4}$ 0 $-\frac{π}{2}$ |
$\frac{π}{4}$ |
The correct answer is Option (2) → $\frac{π}{4}$ Let the integral be: $\displaystyle I = \int_0^{\frac{\pi}{2}} \frac{\sin^8 x}{\sin^8 x + \cos^8 x}\, dx$ Use the identity: $\displaystyle \int_0^{\frac{\pi}{2}} f(x)\, dx = \int_0^{\frac{\pi}{2}} f\left(\frac{\pi}{2} - x\right)\, dx$ Let $\displaystyle f(x) = \frac{\sin^8 x}{\sin^8 x + \cos^8 x}$ Then $\displaystyle f\left(\frac{\pi}{2} - x\right) = \frac{\cos^8 x}{\cos^8 x + \sin^8 x} = \frac{\cos^8 x}{\sin^8 x + \cos^8 x}$ Now add both: $\displaystyle I + I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin^8 x}{\sin^8 x + \cos^8 x} + \frac{\cos^8 x}{\sin^8 x + \cos^8 x} \right) dx = \int_0^{\frac{\pi}{2}} 1\, dx = \frac{\pi}{2}$ $\displaystyle \Rightarrow 2I = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$ |