If A and B are skew-symmetric matrices, then which of the following is not true? |
$A^5+ B^7$ is skew-symmetric $A^{21}$ is skew-symmetric $B^{18}$ is symmetric $A^6+ B^7$ is symmetric |
$A^6+ B^7$ is symmetric |
The correct answer is Option (4) → $A^6+ B^7$ is symmetric Given: \( A \) and \( B \) are **skew-symmetric matrices**, i.e., \( A^T = -A \) and \( B^T = -B \). Properties used:
Option-wise check: \( A^5 + B^7 \): both are odd powers ⇒ both skew-symmetric ⇒ sum is skew-symmetric ⇒ True \( A^{21} \): odd power ⇒ skew-symmetric ⇒ True \( B^{18} \): even power ⇒ symmetric ⇒ True \( A^6 + B^7 \): \( A^6 \) is even ⇒ symmetric, \( B^7 \) is odd ⇒ skew-symmetric ⇒ sum is neither symmetric nor skew-symmetric ⇒ False |