If the system of equations $2x + 3y = 10, x+ky= 4$ has a unique solution, then |
$k = 3/2$ $k ≠ 3/2$ $k ≠ 0$ $k ≠ 1/2$ |
$k ≠ 3/2$ |
The correct answer is Option (2) → $k ≠ 3/2$ Given system of equations: 2x + 3y = 10 x + ky = 4 For a unique solution, the determinant of the coefficient matrix must be non-zero: Coefficient matrix: $\begin{bmatrix} 2 & 3 \\ 1 & k \end{bmatrix}$ Determinant: Δ = (2)(k) − (3)(1) = 2k − 3 For unique solution: Δ ≠ 0 2k − 3 ≠ 0 2k ≠ 3 k ≠ 3/2 Therefore, the system has a unique solution if k ≠ 3/2 |