Two events $A$ and $B$ will be independent, then |
$P(\overline A ∩\overline B)= [1-P(A)][1-P(B)]$ $P(A) + P(B) = 1$ $P(A) = P(B)$ $P(A) + P(B) = 0$ |
$P(\overline A ∩\overline B)= [1-P(A)][1-P(B)]$ |
The correct answer is Option (1) → $P(\overline A ∩\overline B)= [1-P(A)][1-P(B)]$ Correct condition when events $A$ and $B$ are independent is: ${P(\overline{A} \cap \overline{B}) = [1 - P(A)] \cdot [1 - P(B)]}$ For independent events, we know: $P(A \cap B) = P(A) \cdot P(B)$ Using De Morgan's law: $\overline{A} \cap \overline{B} = \overline{A \cup B}$ But for independent events: $P(\overline{A} \cap \overline{B}) = P(\overline{A}) \cdot P(\overline{B}) = (1 - P(A))(1 - P(B))$ |