Let f be a differentiable function satisfying $[f(x)]^n=f(n x)$ for all $x \in R$. Then, $f'(x) f(n x)$ |
$f(x)$ 0 $f(x) f'(n x)$ none of these |
$f(x) f'(n x)$ |
We have, $[f(x)]^n=f(n x)$ for all x $\Rightarrow n[f(x)]^{n-1} f'(x)=n f'(n x)$ $\Rightarrow n[f(x)]^n f'(x)=n f(x) f'(n x)$ [Multiplying both sides by f(x)] $\Rightarrow n f(n x) f'(x)=n f(x) f'(n x)$ [∵ [f(x)]n = f(nx)] $\Rightarrow f(n x) f'(x)=f(x) f'(n x)$ |